
DEMOCRATIZING SOFTWARE DESIGN
 THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

CAN SELİMOĞLU HAIG ARMEN
Submitted in partial fulfillment of the degree of Associate Professor
Master of Design

Emily Carr University of Art + Design
Vancouver, BC, Canada

2017

TABLE OF CONTENTS

i Abstract & Keywords

1 Context: Materiality and People

 1.1 Right Tool for the Right Job
 1.2 Right Tool for the Right People
 1.3 Individuality and Mastery

2 Leaving the Corporate Box

 2.1 Established Culture
 2.2 Design Negotiations
 2.3 Targeted User Group

3 Opportunity Space: The Literacy Gap

 3.1 Hacking
 3.2 Programming
 3.3 The Processing Tool
 3.4 Opportunities

4 Augmenting the Learning Process

 4.1 Direct Manipulation
 4.2 Objects to Think With
 4.3 Thinking with Systems

5 Structural Principles

 5.1 Modularity
 5.2 Crowdsourcing
 5.3 Openness

6 Methodology

 3.1 Interviewing and Participant Profiling
 3.2 Visual Programming Exercise
 3.3 Mental Model Exercise
 3.4 Modularity Exercise

7 The Design Proposal

 4.1 The Creation Environment
 4.2 The Individualization Environment
 4.3 The Social Environment

8 Insights and Future Directions

ii - Appendices

 Appendix A - Participation Assets
 Appendix B - Design Assets

iii - References

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

3

ABSTRACT

The evolution of creative software is informed by the traditional computer-science
methods of development. This results in creation of generic software with task-oriented
perspective. User testing data and feedback that sampled from different individuals is
used in a way that ignores people's individual differences.

Creative software like Adobe Photoshop have become the digital toolboxes of digital
designers, similar to the physical toolbox of a craftperson. While physical craftspeople
have the liberty to choose and create each one of their tools to individualize the physical
toolbox, digital toolboxes tend to be collections of immutable software tasks, packaged
into user interfaces that allow for minimal amounts of customization.

The creative software user is not involved in the part of the software development
conversation due to high levels of entry to learning programming, apart from suggesting
software features in crowded web forums. This issue has not been addressed by the
existing open source software culture.

This research contemplates a systematic approach for enabling all users to
democratically participate in the design process of creative software, individualize
and extend the application logic in order to bridge the gap between their intent and
the output. A new creative software suite that is open to future appropriation through
modularity and social extendability for the purpose of dynamically adapting to individual
differences is designed and presented as a proof of concept.

Keywords: HCI, adaptive software learning, direct manipulation, visual programming,
appropriation of technology, functional individualization, online collaboration, individual
differences, intelligent user interfaces, open source, creative software, functional
modularization.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

4

 MATERIALITY1 AND PEOPLE

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

5

1.1 RIGHT TOOL FOR THE RIGHT JOB

On February 1 2003, space shuttle Columbia burned up while re-entering Earth's
atmosphere due to an undetected hole on its wing. Everyone on board died. Tufte
(2004) notes that NASA officials knew about the risks for two weeks but they dismissed
them due to the optimistic tone in the engineers' reports as well as emails within the
organization that followed the same content structure of the reports.

These reports were prepared in Powerpoint. In summary, Tufte argues that Powerpoint
format encourages imprecise statements, foreshortening of evidence and thought, an
intensely hierarchical single-path structure as the model for organizing every type of
content and thinly-argued claims, unfit for the purpose of serious technical work such
as a real-time engineering analysis of threats to the survival of the shuttle.

These limitations can be considered an aspect of the materiality of Powerpoint
as a documentation medium and as a software tool with its own affordances and
constraints. "Affordances describe the workable capacities of a medium. Affordance
implies a finite budget of opportunities, and so it is complemented with the idea of
constraint which is a source of strength because constraints define the materiality of
the digital medium. Affordances and constraints together shape expression practicality"
(McCullough, 1996). "Despite the lack of physicality there exists a growing possibility
of constructing the experience of a medium in the world of the computer. Furthermore,
there exists a growing collection of such rich symbolic contexts: a digital repertoire.
Intentional differences in symbolic data structure, forms of interaction, and types of
indirect constructions yield distinctions between a growing variety of digital media"
(McCullough, 1996).

Surprisingly in line with McCullough's 1996 definition, while proposing the system
named Sketchpad, MIT computer scientist Ivan Sutherland (1963) named the tools
and functions "constraints". It's important to note that Sketchpad is the origin of
the contemporary toolbox analogy that we have in creative software such as Adobe
Photoshop and Illustrator. Sketchpad was operated through interacting with the screen
with a light pen device. The users could state how they intended the pen to behave
through manipulating the physical set of buttons, named constraints, on the side of
the screen. The pen could be made to draw like a contemporary digital brush tool, copy
and drag existing objects similar to working with symbols in illustrator, erase items or
transform them geometrically, similar to how we alter the functionality of our mouse
pointers by choosing between the tools in our contemporary toolbox interfaces. This
legacy, even today, shapes our expression practicality.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

6

1.2 RIGHT TOOL FOR THE RIGHT PEOPLE

Tufte (2004) argues that the Columbia incident could have been prevented by using the
right tool for the job. According to him, using Microsoft Word or a similar non-propriatery
clone of it would be accurate and adds that this would make the audience smarter
(Tufte, 2004). In a similar context, pioneer computer scientist Alan Kay attributes a
commonly known quote with a disputed origin to Marshall McLuhan: "We shape our
tools and thereafter our tools shape us." (Kay, 1996).

Powerpoint and Word are general utility tools, designed to work with their respective
documentation media. Providing general utility for people requires making general
assumptions about them. Assumptions that attribute right tools to right jobs work for
general scenarios but this approach reduces individuals into personas. "As we overcome
the residual notion that computing is for objective documentation only, we must cultivate
expressive sensibilities. Chances are that appropriate artifacts and descriptions will
engage us through rich and transparent tools, built on newfound densities of symbolic
notation and personally experienced as a medium" (McCullough, 1996).

PHYSICAL TOOL DIGITAL TOOL

Figure 1: The concept of a digital tool is analogous to real life tools.

In the case of craft, we should talk about the right tools for the right people, rather than
right tools for the right job. For a carpenter, choosing a hammer involves being specific
about the purpose and how balanced it is in the individual’s hand. McCullough (1996)
defines the realm of digital craft, amongst other points, as a place "where personal
knowledge combines with practical intent, where the expression is as much functional
economy as aesthetic stance, where the products are individual and idiomatic and
where the medium is the basis for mastery".

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

7

1.3 INDIVIDUALITY AND MASTERY

"Tools provide a path, a context, and almost an excuse for developing enlightenment,
but no tool ever contained it or can dispense it" (Kay, 1996). "No biological organism
can live in its own waste products" says (Kay, 1996) while expressing the frustration
caused by the newly realized inadequacies of the tools he designed himself, adds that

"inadequate tools and environments still reshape our thinking in spite of their problems,
in part, because we want paradigms to guide our goals" and "they resemble the systems
themselves, not a new idea" (Kay, 1996).

In the same way that people change their levels of discourse based on who they're
conversing with, software has the opportunity to better know its users' preferences,
expectations, dislikes and aspirations. A software that does not evolve alongside the
needs of the user is problematic because people accumulate experience and their
relationship with computer systems changes over time. As individuals become more
skilled, computer systems should accompany them through their journey to mastery.

Individual differences of creative people can be seen in the diversity of their work
output. Their needs are unique and they inherently differ in the way they do things. It is
true that our output and thinking is shaped by our tools but the rate of this is increased
in proportion to the specificality of the intended expression. Documentation tools are
similar to typewriters whereas a craftperson's tool is similar to a guitar in the potential
of shaping the output. An instrument of expression, like a guitar shapes a musician's
outcome much more than a generic tool like a typewriter might change someone's
writing. "Individuals differ mainly in system related user characteristics, personal
characteristics and preferences and previously acquired knowledge and abilities. These
broad categories can further be detailed as age, gender, personality, cognitive abilities,
cognitive style, learning style, experience, psycho-motor skills, background knowledge,
goals and requirements, preferences, interaction styles, motivation and, expectations"
(Granic, Nakic, 2010).

The definition of the right tool for the right person also changes over time. "Users
change behaviour as their experience with a system develops. It may be expected that
there will be a need for different interfaces for the same user and task at different
stages. The system is required to arrange itself to match the user’s competence. Users
learn different things about the system at different levels at different times" (Benyon,
Murray, 1993). While customized tools of expression are not for all creative software
users, there is a great deal of evidence that once users reach the level of mastery, they
begin to alter and individualize their tools to best suite their intentions.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

8

 LEAVING THE2CORPORATE BOX

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

9

2.1 ESTABLISHED CULTURE

While Sutherland curated the constraints and affordances of Sketchpad into functions,
knowingly or not, he made way for a specific type of creative output, so do the people
who design our contemporary creative software today. Today software producers
create design tools that only suit the way certain designers work. Instead of the
software growing with your individual creative experience, we are forced to become
more proficient with ever-changing software and align with Adobe's vision of software
mastery. Contemporary creative software is unable to adapt to or grow with the
experience level of the individual. In today’s software design culture, user feedback and
user testing data that has been funneled from the requests of thousands of users down
to is approximated to produce simplified functions of achieving a task for everyone,
ignoring their individual differences.

As evidenced in a paper on the “The Process of Redesigning Adobe Acrobat” (Lin, Scull,
Walsh, 2002), user input is only taken into account during the production phase between
released versions. User tests are conducted to sample user data and the end product
is always designed to offer a single way to achieve task. This results in generalized
assumptions about individuals. With this approach, the design is always left incomplete
for all individual users. Because there are different types of creative minds, forcing
people into using generic ways of creating with their creative tools leaves a gap between
their intent and the output.

"Computer systems have to be used by a wide variety of people. A nomothetic approach
to design excludes people who lie outside the norm" (Benyon, 1993). I personally knew
a graphic designer who was using Adobe Photoshop predominantly and was also color-
blind. Currently established model of developing software provides no feasible way or
intent to adapt to such specific conditions.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

10

1968 GRAIL, Rand Corp. Adobe Illustrator CC2015

IT TOOK ADOBE 47 YEARS
TO RE-INVENT THE SHAPER TOOL

Figure 2: Providers of software may abruptly fade alternative ways of accomplishing tasks into

Furthermore, corporate culture that surrounds contemporary software design culture,

example is a function recently integrated in Adobe Illustrator in 2015 under the name
of the "Shaper Tool". It is actually based on design principles of the GRAIL environment

mainstream software providers for decades.

COPYRIGHTED IMAGES OMITTED FROM CURRENT COPY OF THE PUBLICATION

(removed content depicted the similarities between abovementioned software)

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

11

2.2 DESIGN NEGOTIATIONS

Unfortunately, these root issues are not properly acknowledged by the industry and
band-aid solutions are provided to their perceived symptom called "bloat". Bloat is
explained (McGrenere, Baecker, Booth, 2002) as the way software products become
overfeatured over time due to the way new features are added at iteratively.

Two user-interface based solutions, and varying degrees of their combinations are
commonly proposed as a means to counter bloat (Bunt, Conati, McGrenere, 2007). An

"adaptable" approach is presented as a means to let the user selectively hide less relevant
functions from the view in favor of the needed ones whereas an "adaptive" approach
is intended to automate this process (Hurst, Hudson, Mankoff, 2007). There have also
been attempts to have multiple user interfaces for the same program (McGrenere et al.,
2002).

These methods are indeed employed by the industry. Users can choose which functions
to display on screen and which ones to hide, alter layouts, close tabs and save their
settings as workspaces however alleviating the symptom is not a cure and making
unused features invisible to the user counter-intuitively promotes bloat because it
encourages an unsustainable culture of iteratively adding underutilized functions that
repeatedly miss the mark of catering to the individual users.

Effective design solutions to bloat require acknowledging that a system-based problem
can not be solved solely at the user-interface level without reconsidering the way
functions themselves are designed. It should first be acknowledged that bloat is a
result of the industry's failure to address creative individuals' needs of being able to
redefine their own affordances and constraints of their creative tools based on their
individual needs and differences.

In order to truly individualize a software product, people must be enabled to redefine their
actions that achieve tasks by breaking apart and rewiring established false affordances
and actions that don’t work for them. Functional customization goes deeper into the
application logic and makes it possible to change the behaviour of an application and
is more advanced than customizing only the user interface elements and the layout of
an application, leaving underlying functions as they are (Zeidler, Lutteroth, Weber, 2013).
With the suggestions provided his thesis, I'm making technology more accessible for
non-programmers by lowering people's barriers to building their own tools and functions
for creative software, creating a user experience to let them have their own sets of tools
according to their individual differences.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

12

2.3 TARGETED USER GROUP

"A programming language was written to enable, for example, children to write storytelling
and drawing programs and musicians to write composition programs. In this vision,
there was no distinction between a computer user and a programmer. Thirty years after
these optimistic ideas, we find ourselves in a different place. A technical and cultural
revolution did occur through the introduction of the personal computer and the Internet
to a wider audience, but people are overwhelmingly using the software tools created by
professional programmers rather than making their own." (Fry, Reas, 2007).

Creative software is being designed like general utility software, aiming to provide the
right tool for the right job. While arguing so, this thesis also acknowledges that there
are software users who might not feel the immediacy for a change probably because
their expectations from creative software are similar to general utility tools or their
expectations are accurately catered by the software providers at the moment. However,
there are craftspeople who do feel this immediacy, who appropriate, hack and even
build their own software depending on their computer literacy.

Using

Learning

Imagining

Extending

Figure 3: For some, the intent to extend software functionality and the journey towards it, emerges
through being a user-learner with expressive sensibilities but due to individual differences, this is not
a linear path of progress for everyone. Also the gap encountered between imagining and extending is
more personal and social than technical.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

13

Software usage and learning encourage one another. The user-learner group is
extensive and is consisted of people with a variety of expectations. Amongst them,
there is a sub-group of people who favor individual expression beyond the methods
of accomplishing tasks already provided by their software. Some members of this sub
group, imagine ways to extend said software functions. Those with the intent to extend,
do so with varying degrees of success depending on their proficiency with programming
and hacking. Those with little software literacy, such as people from art and design
backgrounds, often face a barrier in doing so. This thesis aims to explore the ways to
fill this niche. These concepts are further explained in the following sections.

It should also be noted that people transition between these groups if their expectations
and industry provided solutions misalign over time. This thesis sees merit in building a
culture that promotes methods of developing software that adapts to the individuals at
the functional level, blurring the definition between the developer and the user roles by
including the users in the dialogues of extending the logic of their applications.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

14

 OPPORTUNITY SPACE:3THE LITERACY GAP

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

15

3.1 HACKING

Users first resort to workarounds to circumvent the shortcomings of mentioned
inadequacies when their needs aren’t met by the provided functionality by appropriating
existing elements. "Appropriation of technology is a process by which users complete
the work of designers by making interactive systems functional within the frame of their
situated activities" (Belin, Prié, 2012).

Appropriated solutions are not internally recognized by the computer system as they
only exist at the user’s perceptual level. In that sense, they are workarounds that
sometimes require giving up on the intended functionality of the repurposed tools. Their
outcomes are not system-wide and potentially break when the original software design
is altered by the developers.

However, the severity of this shortcoming depends on the vision of the developer. It
is suggested (Dix, 2007) that software can be designed for future appropriation in
mind and it's a concept that can be embraced by the software provider. In other words,
creating hackable software makes extending software through hacking, a viable model
for providing software.

A good example for this is the text editor named "Atom" which looks and acts like a
regular text editor at first but is completely designed for appropriation. It is advertised
as "a text editor that's modern, approachable, yet hackable to the core - a tool you can
customize to do anything but also use productively without ever touching a config file"
("A hackable text editor for the 21st Century," n.d.).

At one point in my career as an interaction designer, I found myself in the situation
having to use a prototyping tool that only worked on Mac computers when I didn't have
access to a Mac computer. Luckily, I found an online guide (Chen, n.d.) to hack the
Atom text editor into mimicking the same functionality of that prototyping tool on the
Windows computer that I had. That day, for this specific scenario, Atom provided me
enough room for appropriation. While there are other software tools designed for varying
degrees of user appropriation in mind, such as Ableton Live for music ("LiveCreate,
Finish, Perform", n.d.) there is both an unaddressed opportunity to utilize this concept
for visual and interactive creative software and a wide gap to further progress into
extending software beyond hacking.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

16

3.2 PROGRAMMING

The next step for a computer user towards the path of being able to define their own
constraints and affordances is to learn programming and create software or directly
edit the source code of existing software. It's important to note that corporate software
companies do not sell but license the rights of usage of their software, retaining the
intellectual property therefore it is not technically or legally possible to work with the
source code. Luckily there are open source alternatives to commercial creative software
that is on the market. "Open-source software depends on the availability of its source-
code to allow users to debug, customize, and extend it: presumably to free its users to
do what they want with it" (Cheung, Chilana, Kane, Pellett, 2009).

Despite that, between appropriation and programming, we have the software literacy
gap. "For users of open-source software who are novice programmers, source code
can be as impenetrable. Opening up the source code is only the first step for making
software more customizable. The challenge then is to ask how HCI principles can work
hand-in-hand with open-source to promote customizability" (Cheung et. al, 2009).

Software developers, including open source developers, act as their own researchers and
have their own idea about usability. Online open software development and discussion
environments such as Github are practically exclusive to people with programming
skills. Layman, even designers are not enabled to participate in this type of dialogue.
There are many role-sets in open source software design projects such as the module
lead, module developer, quality assurance lead, veteran tester, patch contributor, test
case contributor, bug submitter, feature requester alongside the module developer and
the passive users and observers (Jensen, Scacchi, 2007) but there are no roles that can
be fulfilled by non-programmers, including designers. Decision-making processes are
exclusive to programmers.

This is in detriment to both parties, programmers and non-programmers, because
programmers are barely familiar with designers' process. To envision software and user
experience solutions that are truly expandable, we must explore a variety of approaches;
programmatic and design-native approaches as well as hybrids of the two. In the case
of GIMP, acronym for "GNU image manipulation tool", the open source alternative to
Photoshop, software design is an almost exact copy of Adobe Photoshop but there is
also an added difficulty curve in user experience for the developers felt the necessity to
differentiate the UX from Photoshop but couldn't provide a designerly solution to do so
without creating a gap between the user and the already established user experience
norms.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

17

3.3 THE PROCESSING TOOL

The only alternate avenue that comes close to close to addressing the gap that I've
described for is the creative coding tool named Processing which was specifically
designed to target the people who wished to extend the functionality of their software
tools. "It integrates a programming language, development environment, and teaching
methodology into a unified system. Processing was created to teach fundamentals of
computer programming within a visual context, to serve as a software sketchbook, and
to be used as a production tool for specific contexts" (Fry, Reas, 2007).

The creators of Processing, Casey Reas and Ben Fry first acknowledge that "as a group,
artists and designers traditionally lack the technical skills to support independent
software initiatives" (Fry, Reas, 2007).

Fry and Reas (2007) support the idea that "Programming is not just for engineers. Many
people think programming is only for people who are good at math and other technical
disciplines. One reason programming remains within the domain of this type of
personality is that the technically minded people usually create programming languages.
It is possible to create different kinds of programming languages and environments that
engage people with visual and spatial minds" (Fry, Reas, 2007).

While stating one of his personal goals with Processing, Fry (2007) explains that he
wishes to allow designers taking control of their own tools. Afterwards, he goes on
to define the gap that is also the focus of this thesis and wishes that designers can
be enabled to build their own tools: "As designers have become fed up with available
tools, coding and scripting has begun to fill the widening gap between what’s in the
designer’s mind and the capability of the software they’ve purchased. While most users
of Processing will apply it to their own work, I hope that it will also enable others to
create new design tools that come not from corporations or computer scientists, but
from designers themselves" (Fry, Reas, 2007).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

18

3.4 OPPORTUNITIES

Even with the huge success of the Processing libraries and community, the software
itself, although still easier then most programming environments, does not provide
a gradual path of entry and still has a steep learning curve for designers and visual
learners. "Processing does not present a radical departure from the current culture
of programming" (Fry, Reas, 2007) because it ultimately aims to change people into
accepting programming as it is suggested today. Interface designer and computer
scientist Bret Victor argues that in order to get people to understand programming,
programming itself should be changed and turned into something understandable by
people (Victor, 2012).

He compares the learning process of Processing to a ruthlessly abbreviated cooking
show. "First, you're shown a counter full of ingredients. Then, you see a delicious soufflé.
Then, the show's over. Would you understand how that soufflé was made? Would you
feel prepared to create one yourself? Of course not. You need to see how the ingredients
are combined. You need to see the steps" (Victor, 2012).

Seeing, in this context, is meant literally. "Programming is a way of thinking, not a rote
skill, a programming system should support and encourage powerful ways of thinking.
Processing environment addresses neither of these goals and ignores decades of
learning about learning. People understand things that they can see and touch. In order
for a learner to understand what the program is actually doing, the program flow must
be made visible and tangible. The environment can make the flow tangible and visible"
(Victor, 2012).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

19

 AUGMENTING THE4 LEARNING PROCESS

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

20

4.1 DIRECT MANIPULATION

Computer scientist and human-computer interaction researcher Ben Schneiderman
(1983) prefers the term "direct manipulation" when mentioning tangibility of visibility
of the environment and the flow. "Direct manipulation depends on visual representation
of the objects and actions of interest, physical actions or pointing instead of complex
syntax, and rapid incremental reversible operations whose effect on the object of
interest is immediately visible."

Schneiderman mentions ease of learning as a merit of direct manipulation and suggests
that programming itself should utilize it. "Novices can learn basic functionality quickly,
usually through a demonstration by a more experienced user; Experts can work rapidly
to carry out a wide range of tasks, even defining new functions and features; Users gain
confidence and mastery because they are the initiators of action, they feel in control,
and the system responses are predictable. Performing tasks by direct manipulation is
not the only goal. It should be possible to do programming by direct manipulation as
well" (Schneiderman, 1983, 1997).

According to McCullough, direct manipulation suspends disbelief, promotes participation
and reduces the obscurity when interacting with the system. "The psychological
dimensions of human-computer interaction determine the degree of engagement with
these symbolic manipulation worlds. Thus, the nature of the computer as a medium
began with the introduction of direct manipulation. Establishing both design worlds
and psychological engagement depends on building adequate mental models. This is
the most essential requirement for the computer to be understood as a medium. The
best way to approach these questions is to understand software as a representational
context: software designed and used properly creates a world of possibilities within
whose assumptions and parameters we operate" (McCullough, 1996)."

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

21

4.2 OBJECTS TO THINK WITH

Fry and Reas (2007) list a project by Seymour Papert as one of the origins of ideation for
Processing. Papert, with this project in 1960s, aimed to teach children how to program
by making use of a robotic drawing device that resembled a turtle. There were also
on-screen elements that symbolized virtual turtles. In that sense, it employed direct
manipulation with close references to real life (Papert, 1980). The turtle analogy went
beyond a drawing device and virtual on screen representations and turned into a bridge
between the user and the system. " The turtle became more than a drawing device. It
was a creature with certain behaviors which are interesting to study and might help us
understand ourselves" (Solomon, Papert, 1976).

We can't speak of a similar engagement model in Processing. It's notable that, in their
decision to shape the learners around established concepts programming and not vice
versa, Processing developers had to ignore fundamental features of something they
were inspired of. "My interest is in the process of invention of "objects-to-think-with"
says Seymour Papert and adds "objects in which there is an intersection of cultural
presence, embedded knowledge, and the possibility for personal identification" (Papert,
1980). "The Turtle is a computer-controlled cybernetic animal. It exists within the
cognitive minicultures of the -LOGO environment-, LOGO being the computer language
in which communication with the Turtle takes place. The Turtle serves no other purpose
than of being good to program and good to think with. Some Turtles are abstract objects
that live on computer screens. Others, like the floor Turtles shown in the frontispiece
are physical objects that can be picked up like any mechanical toy" (Papert, 1980).

Victor argues that "the turtle serves a number of brilliant functions, but the most
important is that the programmer can identify with it. In Processing, by contrast, the
programmer has no identity within the system. There are no strong metaphors that
allow the programmer to translate her experiences as a person into programming
knowledge. The programmer cannot solve a programming problem by performing it in
the real world" (Victor, 2012).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

22

4.3 THINKING WITH SYSTEMS

Of course visibility, tangibility and direct manipulation of digital elements do not have to
involve representations of real life objects such as a turtle. "Procedural turtle graphics
just wasn't it" says Alan Kay (1972) as he explains Dynabook, another project that is
listed to have had an influence on Processing even though its fundamental principles
too, are unimplemented in Processing (Fry, Reas, 2007).

Kay's Dynabook further abstracts the analogies of direct manipulation and frames
them as a means to allow people learn to think with systems. "Systems became a more
thinkable topic in the latter part of the 20th century because a medium for dealing with
complex dynamic interactions was also invented in mid-century: the computer. We can
just as reasonably think of the computer as a qualitatively new way to understand many
kinds of complexity" (Kay, 2012).

The Dynabook concept utilizes interactive on screen abstractions in the form of boxes.
While mentioning the user tests he performed on children as young as 12-year-olds,
Kay expresses exciting outcomes such as tools built by children that were functional
painting, illustration, music and circuit design systems (Kay, 1972).

This was made possible by shaping the learning environment around the learner, in
this case the programming environment around the layperson to programming. Kay
argues that "The more different and difficult the medium, the less attractive-or even
visible-it appears" (Kay, 2012) and further acknowledges the importance of adapting
the environment to the learner: "Each of us comes to a particular subject with different
predispositions, both genetic and from experience. Some will need very little help, some
will need some help, and some will need a lot and different help. Some will be very
motivated, some will not be at all interested" (Kay, 2012).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

23

 STRUCTURAL5PRINCIPLES

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

24

5.1 MODULARITY

As carpenter choose each of their tools, they design their own toolboxes. This is how
people using creative software should be able to design theirs, by choosing their tools
in a modular way, at a functional level. Changing the way creative software is designed
to an individual centric way requires function-based modularization. While modularity
is utilized by developers as well as users, it is not a technical term but a fundamental
part of thinking with systems. "When writing a modular program to solve a problem, one
first divides the problem into subproblems, then solves the subproblems, and finally
combines the solutions. The ways in which one can divide up the original problem
depend directly on the ways in which one can glue solutions together. Therefore, to
increase one’s ability to modularize a problem conceptually, one must provide new
kinds of glue in the programming language" (Hughes, 1989).

There are examples of online communities built around modular software platforms
where developers share their solutions in a modular way. WordPress is such a content
management system with a vast community developing modules for it. (“WordPress.
org,” n.d.; “WordPress Themes from ThemeForest,” n.d.) WordPress is modeled around
multiple collaborative projects with their own group of collaborating developers. Each
of these modules are associated to a specific function. This way it is possible to build
alternative modules for each function, all maintained separately by their contributors.
There is also a main project that maintains the core of the software which is designed
for external modules to attach to and communicate to one another. This way users
choose the functions of their software by choosing their modules. Designing software
with the potential for online collaboration towards continuing the design process in a
collaborative manner is essentially designing software for future appropriation as (Dix,
2007) suggests.

"Modularity is the human mind's lever against complexity. Breaking down a complex
thing into understandable chunks is essential for understanding, perhaps the essence
of understanding. Processing's lack of modularity is a major barrier to recomposition.
The programmer cannot simply grab a friend's bouncing ball and place it alongside her
own bouncing ball variables must be renamed or manually encapsulated; the "draw"
and mouse functions must be woven together, and so on. One can easily start from
an existing Processing program and modify it, but the language does not encourage
combining two programs" (Victor, 2012).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

25

5.2 CROWDSOURCING

In 1291, Venetian Republic ordered all glass makers to move their foundries to Murano
island. Clustered in this specialized space, the glass makers concentrated on their
profession. The high quality of Venetian glass is known even today. Silicon Valley in
California is hosting technology institutions in a similarly clustered way. This pattern
shows that the results improve when the density of people with similar goals and
interests increase.

Likewise, utilizing the density of creative people already online, provides an opportunity
in socializing the development process of creative software. This is related to a very
individual-centric area of DIY and maker practice that involves personalization and
democratization of technology by utilizing human computer interactions. The concept of
hacking started off as a solely software-related term and ended up involving a tangible
layer. The physical aspect of the DIY movement made the concept of hacking accessible
to non-programmers and cultivated a culture and community around it in which people
are part of a whole but as individuals. (Tanenbaum, Tanenbaum, Desjardins, Williams,
2013).

Creativity needs the synergy of many and individual and social creativity can and must
complement each other in complex design problems. Sociotechnical environments are
necessary for communities to collaborate and bring social creativity alive: to express
themselves, combine different perspectives, and generate new understandings. In
large and heterogeneous groups working together for long periods of time over
complex design problems, as well as in communities including individuals with diverse
but converging goals and intentions, distances and diversity between contributing
individuals can enhance creativity rather than hinder it (Shneiderman, 2007).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

26

5.3 OPENNESS AND AIMS

Emergence of crowdsourcing amongst industry leading companies serves the purpose
of enhancing a privately-owned proprietary software by the help of unpaid outside
digital labor. Adobe, for example, introduced Photoshop Design Space as an alternative
interface for Adobe Photoshop for the purpose of designing mobile applications. At the
time of writing this document, Adobe was crowdsourcing its design and development
on Github and the interface itself is built using common web technologies such as html,
css and javascript, making community intervention possible. In addition to that, while
the end product has collaborative qualities, all effort is aimed towards the perfection
of a single official solution both interface and function-wise. Most importantly, the
openness of Adobe Design Space is only inclusive to programmers since Adobe doesn’t
provide a solution to involve non-programmers in the development.

Even though corporate software providers may utilize modular features or community
labor, they do so for their own ends. In the case of WordPress, the core is a finished
software product, is maintained by a moderating entity that is also the owner and many
features are enforced. When the core of the software system acts like this, modules
often communicate with the system at a superficial level, failing to perform as well as
and as consistent as the functions provided by the software provider. For this reason
the core of the software system should act equally towards the functions regardless of
who is making them and should be function-neutral by itself.

This thesis acknowledges existing suggestions such as Processing's and aims to
avoid their shortcomings while making the concepts such as openness, crowdsourcing,
modularization, thinking in systems and direct manipulation do the work of smoothening
the progression path for people who want to extend their applications but don't
possess adequate computer literacy. This study suggests that negotiating a solution
to manipulate software logic beyond the user interface, involves challenging the
hierarchical relationship between the provider and the user of the software by making
the user an active agent in software development, promoting them to a co-developer
state. To this end, this research presents the proof of concept of a framework with
the potential to change currently established paradigms about software development
models.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

27

 6 METHODOLOGY

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

28

Four creative software users with some level of proficiency in 2D image creation software
such as Adobe Photoshop, Adobe Illustrator or GIMP were recruited as participants
during the primary research phase I conducted. They were asked to work with creative
tools designed to acquire data from them on the topics of creative software learning,
providing accessible levels of entry to extending said software and online socialization
for this purpose.

The research methods included interviewing, usability testing through a mix of
observation, think-aloud protocol and cognitive walkthrough activities that involved
observing the participants while accomplishing known and new tasks and having them
verbalize their actions in all phases. Participation involved working through a set of one-
on-one activities, including low-tech, paper based exercises as well as screen-based
interactive exercises. The questions and figures are included as Appendix A.

How is software usage experience accumulated?

How does social learning work for software? What kind of barriers prevent participation?

How can we help laypeople build their own tools?

I II

III IV

C O N S U M E R CONTRIBUTOR

Figure 4: The methodology is established on a two-axis model between social and technical sides
of the issue as well as the individual's journey from a consumer to a contributor role.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

29

6.1 INTERVIEWING AND PARTICIPANT PROFILING

Semi-structured interviews were conducted to gather data about the participants'
software literacy, software usage habits, how they accumulated experience by
themselves and by the help of others. They were asked about whether or not, how
and why they participated on specialist online social platforms. This data was used to
create anonymized profiles of the participants.

Three of the participants were experienced designers. From now on, they will be
referred as A, B and C. One participant was a software developer and will be referred
as X. Some questions were based on the creative tool of their choice. All participants
chose Photoshop as their main creative tool with the exception of A who was uncertain
between Photoshop and Illustrator.

Interview questions were aimed at discovering ways to turn the layman into an active
agent who participates in the evolution of their own tools. The questions were categorized
under the categories of social learning and participation as well as individual learning
and extending. "A" was the only designer with decelerating learning performance and
she wasn't motivated about learning anymore, except while working on hobby projects.
She would search for information online but would only read top search engine results
for key points. She would socialize online for the purpose of learning if there was an
easier alternative to reading and writing. "A" had no significant programming skill. As
a user with relatively low proficiency, "A" was overwhelmed while learning because she
was getting lost due to lack of reference points in software:

A- "If I don't know the existence of a method, there's no way I can
learn it since I can't learn something I'm oblivious to. If something
feels impossible at the moment, I assume it is impossible for me and I
immediately try something else that feels easier."

This comment signified that losing perception of the scale and the constraints of the
software environment negatively effected software learning and that in addition to
specific tools and functions, our entire systems, software environments have their own
constraints and affordances. Therefore their scale and boundaries too, should be made
tangible and visible.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

30

"B" was intermediately experienced and had worked with actionscript for 12 years. His
learning was getting faster and he was seeking to learn how to do things faster and
more efficiently because of the pressure at the work environment.

"C" was the most proficient designer in the context of this research. He was seeking to
learn the optimal ways of doing things as well as to play with the limitations of tools.
He stated that he was experienced with the entirety of Photoshop's functions with the
exclusion of those added after version CS3 because he did not see them as an inherent
part of the whole. He criticized proprietary software with these comments:

C- "Photoshop versions after CS3 are overfeatured, ineffective and
unintuitive. Adobe keeps adding new features because their teams
probably have some kind of productivity criteria they have to meet within
the company. They aren't designing for the users anymore but themselves.
These new functions cause accidents that make me lose my way."

"X" was an active Github contributor and server-side developer but he did not read online
design communities or watch tutorials. His photoshop learning had started off fast but
stopped early on. He was using design tools repetitively and inefficiently. New programs,
functions and interfaces like the ones in GIMP were unfamiliar and confusing to him. For
that reason he couldn't customize design tools. Unofficial plug-ins in creative software
were distracting him from the experience because people who were developing them
were substituting the designer roles themselves. According to him, because design
thinking was not involved in the creation of plug-ins, user experience ended up being too
different than the original program and the user's expectations. This can be interpreted
as a great opportunity to invite designers participate in software development to the
benefit of everyone involved.

When asked about their social learning habits, all designers declared their preference
of volunteer communities over official sources in different ways (Appendix A: Answer
Set 1). Further answers revealed that designers were interested in extending their tools
to varying degrees and those with more experience had more specific intentions, to the
point of breaking and glitching the software in an intentional, and an individual-specific
manner (Appendix A: Answer Set 2).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

31

These answers showed that the act of individualization did not necessarily have to mean
having tool for a perfectly optimized output; it could also mean individualized expressive
freedom through freedom from curation.

Interviewing also revealed that those who imagined new functions on their own were
facing difficulties due to lack of means to extend software that adapts to their existing
skill set. They also felt over overwhelmed and unwelcome in development communities
(Appendix A: Answer Set 3).

These answers provided insight on how the acts of using and making software, concepts
that once went hand in hand, have now split into separate sub cultures with skeptical
stances towards one another. The answer also led to the interpretation that also hinted
that a solution to this could be more likely to be formulated by fostering dialogue
between software users and volunteer developers compared to between software users
and corporations.

Another realization upon profiling the participants was that software usage and software
learning were happening simultaneously without one preceding the other and learning
would accelerate and decelerate at different phases of their software usage histories for
different people. This is considered as an example of individual differences in learning.

6.2 VISUAL PROGRAMMING EXERCISE

After the interviewing, a low-tech, paper based exercise was performed. Several
prototyping tools and applications with visual programming components were
researched in order to come up with the design of this exercise. Resulting data from
this exercise was analyzed to propose a design solution for lowering the participants'
mental barriers to building new tools and functions to suggest individually-adaptive
software prototyping and building methods.

The participants were presented some cards with graphics on them that depicted
different visual programming methods and a visual representation of a screen transition
in Adobe XD, a prototyping application. They were explained a scenario, in which they
could use either of these methods to change the attributes of this screen transition by
the use of an extra button labeled "Advanced Options." This button or such intimate HCI
methods don't actually exist in Adobe XD.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

32

The participants were asked to rate each of the approaches according to their potential
to freely produce, sustained long term use and legibility. The method labeled "events"
was chosen for long term use. Scripting scored lowest in legibility but highest in
potential. When asked to summarize their impressions with a few words, the participants
answered as shown in the third figure in Appendix A.

When asked to pick one method as their favourite, all designers picked "events" and
the developer picked "blocks". Considering all factors, not even the developer wanted
to choose scripting as a sole option even with its perceived advantages. When asked
about factors that would change their choice, such as the characteristics of the intended
end result or their experience level with the program, people were open to refining their
choices. They preferred to mix more than one method and in this case, everyone wanted
to combine scripting with a visual programming method (Appendix A: Answer Set 4).

These outcomes showed that a programming environment, scripting, that only displayed
coding syntax had a distinct effect on people. It was considered both intimidating
and intimate at the same time. Visual programming methods on the other hand, were
considered more for practical purposes and were seen less powerful in expression but
the perception of practicality as well as the perceived potential for expression were
higher when scripting could exist alongside visual programming.

According to the data, participants with design oriented backgrounds would agree upon
a different visual programming method compared to the participant with a programming
background but this is not considered conclusive based on the sample size. In general,
the answers did not provide reliable evidence to rank visual programming methods
amongst each other but their distinctiveness from the scripting solution was evident.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

33

6.3 MENTAL MODEL EXERCISE

The participants were described an end result that was attainable with an image
creation software and were asked to verbalize the steps to accomplish this goal by
thinking aloud. The actions involved drawing two, five-sided stars, one red and the other
black and also one being approximately 10% larger than the other. Afterwards, they were
provided access to a computer and asked to actually accomplish the task. Purpose of
this was to assess the difference between the individual's methodological expectation
of accomplishing a task compared to its actual representation in the software system.

The more proficient half of the participants, "B" and "C" successfully performed what
they verbalized whereas the perceived and idealized methods of "A" and "X" were
inconsistent with the reality.

"A" used the "transform" function. Actual experience was inconsistent with the expectation.
Expected user experience was a mix between Illustrator and Photoshop. "B" used the

"transform" function. Actual experience was consistent with the expectation. "C" used
the "contract" function. Actual experience was consistent with the expectation. "X"
used the "contract" function. Actual experience was inconsistent with the expectation.
Got stuck and did not know alternative ways.

Results showed that the consistency between the individual's methodological
expectation of accomplishing a task compared to its actual representation in the
software system varied with the proficiency of the user. It is fair to say that ways of
accomplishing mentioned tasks were perceived unnatural by the participants with
less experience but it's not possible to say whether or not the opposite is true for the
experienced participants because their consistency in thinking similar to the software
system might as well be a conditioning that also went against their natural way of
accomplishing tasks.

If it was possible to conduct a second set of user tests, we could provide symbolic
structures that emerged as people interacted with the creative tool as Victor (2012)
suggested. This would provide the opportunity to more accurately observe less
experienced users as they got lost and could potentially be used to help them advance to
a higher level of experience. While conducting this second set of tests was not possible,
I saw this as an added opportunity to emphasize direct manipulation techniques in
my design proposal. Another important thing to note is that the participants' choice of
methods for accomplishing tasks were independent of their success rate or experience,
this is considered an aspect of the diversity of individual differences.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

34

6.4 MODULARITY EXERCISE

Using the image creation program of their choice, the participants were asked to, while
thinking aloud, select an area of the canvas and reducing the size of the selection by
10% with methods of their preference. Afterwards, they were shown cards that depicted
two new function designs that were intended to be modular alternatives to the existing
functions as well as to each other, possessing different accessibility to function ratio
for users with different experience levels and expectations. One of them was rich in
features, whereas the other was simple, focusing on speed and ease of use. Both
involved more direct methods of engagement compared to the existing user experience.

After this, they were asked to perform the first task again and compare their new
experience to the initial one. The purpose was to observe the cognitive effects of being
introduced to modular function alternatives to existing tool. The participants were
asked to verbalize their impressions and make comparisons to the methods they used.
They were encouraged to think about the occasions they would prefer either of the
approaches over another or together, also while taking their own learning into account.
All participants were open to the idea of replacing existing functions and to switch
between them depending on context. Although "B" did not like programming he didn't
feel threatened by the way commands were presented (Appendix A: Answer Set 5).

Both methods were perceived to be useful depending on context but not necessarily
depending on individual as no one felt uncomfortable with the one that employed
scripting unlike the way they did during the visual programming exercise. It is fair to
assess that this way due to the way scripting was presented in a context, alongside a
visual representation and in an amount that would assure people that they would not
lose control over it. This interpretation helped define the design proposal.

Finally, they were asked to perform the initial task again and compare their new
experience to the initial one. The purpose of this was to analyze the cognitive effects of
being exposed to function alternatives and modularity in the context of constraints and
affordances of the existing tools (Appendix A: Answer Set 6). Participants expressed
discontentment when performing the task after talking about the alternatives and some
started expressing their own ideas that were different than both the existing methods
and shown alternatives. Having shown other ways things could have been, seemed
to have sparked their interest. Because they were exposed to the idea of extending
software by another person alongside a visualized context, they saw merit in it. This
outcome is reflected on the design proposal and helped shape how the entry points to
the system were designed for people.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

35

 THE DESIGN 7 PROPOSAL

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

36

THE DESIGN PROPOSAL

Similar to how the people who built Processing realized that they had hit a ceiling with
creative tools and proposed their solution to extend, I'm proposing an alternative based
on the realizations, analyses and user observations mentioned in this thesis so far.

Figure 5: The proposed design aims to smoothen the steep learning curve of extending software for
non-programmers and to turn it into a natural part of engagement

The proposed design is a set of three interlinked user modes with distinct purposes.
The first one is a creative environment, that appears similar to any other image creation
software we are accustomed to but restructured according to the goals of this project.

The second environment is embedded inside the creative environment and made for
extending the creative environment through methods that scale to the user's expertise.
This can be compared to embedding Processing inside Photoshop with added benefits
of direct manipulation.

Finally, the social environment is designed to promote dialogue between people with
different skill sets and also acts as an entry point to the system. This can be compared
to adding the appeal of social media inside the aforementioned system. The synergy
between these environments create a system of perpetual change. Visuals are included
as Appendix B.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

37

Once a user without programming skills launches the first mode, she finds it immediately
usable because the initial look and feel of this environment is not significantly different
than the defaults she is accustomed to. When she decides to make interface-level
changes in this environment, she reveals a basic option menu from the relevant panels,
similar to the way it is done in extant image creation software. At this point, she notices
the addition of further steps she can take by pulling the same button further away.
Every step leads up to a gradual increment in complexity and power. As her experience
with the system develops, she feels encouraged to experiment with these additional
steps because she can do so through direct manipulation. She becomes literate about
programming and the ways of manipulating the software logic underneath the user
interface through this individualization mode that incrementally adapts to her comfort
levels of modifying things. Ultimately, this individualization journey leads up to a final,
social environment in which helps accelerate her learning by joining the individually-
acquired experience with others' through a non-hierarchical collaboration model.

The developers of Processing also attempted to provide an alternative to the hierarchical
relationship between the provider and the user of the software and wanted to promote
the user to a co-developer state in software development. They also thought that doing
so would blur the difference between the user and the developer roles which would in
turn democratize software building but they still expected people to think like computers
did. In fact the way programming was taught should have adapted to people's way of
learning. Realizations during the primary research suggest that such misalignment of
expectations between programmers and non-programmers are perpetuated by the lack
of dialogue between these groups.

These realizations, analyses and user observations showed that, in order to allow
people have individualized constraints and affordances with their software functions to
bridge the gap between their intent and the output, the steep learning curve of extending
software should be smoothened and made more gradual for non-programmers, turned
into a natural part of engagement through means of direct manipulation. Additionally
the social dialogue between programmers and non-programmers should be improved.

7.1THE CREATION ENVIRONMENT

Analyzing extant image creation software such as Photoshop, Illustrator and GIMP as
well as primary research revealed that the user experiences for achieving tasks were not
presented in a consistent manner in these tools but were obscurely scattered throughout
the interfaces. User data derived from the primary and secondary research suggests
that the culture of incrementally adding features while disregarding real life scenarios

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

38

resulted in inconsistent software packages as a whole. Primary research showed that
less experienced users, like participant "A" needed to perceive the boundaries of the
environment better in order not to lose their way whereas more experienced users like
participant "C" would deliberately wish to redefine it to the point of glitching.

As opposed to having access to several cross linked functions from menus, button and
panels, as it is in Adobe programs, functions are modularized and their user-expected
roles are resituated in perceptually consistent boundaries in this proposal, making it
possible to categorize user interaction elements that serve towards a task logically.
This modularization and categorization is done according to the "levels of tangibility" of
the functions, ranked by their desired proximity of access.

While we are working, the canvas is the main focus of our perception, it's our paper.
The brush tools act as on-screen extensions of our physical input devices such as the
mouse or a stylus so they come in second to the canvas in regards to intimacy. On the
other hand software elements that detach us from the immersion of the craft, create
varying degrees of disbelief. Inbetween, we have some user interface elements that
relate to the more tangible tools, and some that relate to those that break the immersion.

This modularization and categorization allows us, for example to have a typographical
sub-system, consisted of the entirety of typography related panels, tools and menu
items and represent the materiality of the typographical experience. Same applies to
other concepts such as color. This way the, relationships and hierarchies between sub-
systems can be defined more clearly, direct manipulation techniques can be applied
accurately and the boundaries of the system is perceived in a consistent manner.

This way every functional sub-system -module- may be considered a community project
on their own so that the user may choose between alternative modules maintained by
different community members according to their own expectations. These expectations
may be task based or individual focused. These proposed changes essentially mean
adjusting the affordances and reconstraining the materiality of the tool which is a way
to make software adapt to the needs of the learning users and also a way for future
appropriation and expandability for the benefit of the advanced users.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

39

7.2 THE INDIVIDUALIZATION ENVIRONMENT

As primary and secondary research suggests, upon reaching a certain expertise level
with a tool, people desire to extend that tool for specific purposes. For some people,
as in participant "C", desire to extend may emerge as a desire to have unforeseen
outcomes through glitching. The definition of glitching is very subjective so everyone
would answer differently when asked about what a "glitchbrush tool" would mean to
them.

WHAT WOULD
YOUR PERSONAL
GLITCHBRUSH
TOOL DO?

Figure 6: A "Glitchbrush" tool is a very subjective concept by nature.

A typical corporate creative software approach might be to offer designers a generic
glitch tool, which goes against the notion of establishing your own personal way of
glitching imagery. The only way to provide people the means to have such tools is to let
them build their own creations and alter them as their expectations change over time.

The individualization environment resides as an extension to the creation environment
and is intended to provide such means through a mixed use of direct manipulation
techniques and traditional programming methods. The user experience is intended to
adapt to the proficiency level of the extender. A smooth transition between different
levels of complexity is provided to let people gradually reveal and conceal basic and
advanced methods, offering lower levels of engagement with the mechanics at every
increment.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

40

Scalability of this environment helps blur the line between the developer and the user
roles adaptively. In sequence, a basic tool configuration interface expands to a personal
assistant mode which in turn expands to a coding abstraction mode, finally multiple
coding abstractions and access to actual code is provided at the same time, side by
side, employing a "what you see is what you get" (WYSIWYG) approach. This approach
encourages people to occasionally move outside of their comfort levels of modifying
things because doing so doesn't require any dedication. People who expand into a
difficult stage may return and continue from a mode they feel comfortable with.

This environment and the tools themselves are intended to be built by common web
technologies such as html, css and javascript. Web technologies have been successfully
used for making desktop applications before; Adobe Design Space being an example of
that. As of the date of this thesis, the most popular open technologies for this purpose
are Electron ("Electron", n.d.) and Node Webkit ("NW.js", n.d.).

In order to demonstrate this concept, visual abstractions from the primary research
stage are re-used. They are intended to be replaceable modules themselves but for the
purpose of this demonstration, they are curated through a list of existing approaches
from prototyping tools such as Framer, Marvel, Scratch, Origami, Principle, Sketch,
Avocado, Flinto, Atomic, UXPin, Prott, Pop, Webflow, Adobe XD, Proto.io, JustInMind,
Balsamiq, Mockplus, Invision, Form, Omnigraffle and Axure as well as programs that
aren’t intended to create prototypes but include a visual programming component like
Construct, Antares Universe and Unity Playmaker.

7.3 THE SOCIAL ENVIRONMENT

The social environment is a web based collaboratory space, accessed from within
the software as well as from any web browser, including mobile devices just like a
regular website or packaged as a social mobile application. It provides an accessible
alternative to existing collaboratory development environments such as Github by
making difficult concepts visible and tangible, making the experience similar to a
similar to a DIY contributory space through means of direct manipulation. Unlike the
existing open source software development project organizational models, it's aimed
at making non-programmers a part of the development process with a non-hierarchical
collaboration model that includes roles for both designers and developers, allowing
people to contribute according to their skills.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

41

Github and existing graphic user alternatives to Github such as GitKraken and Github
Visualizer as well as contemporary social media environments were significant
inspirations for the imagining of this environment. This environment is intended to be
built by the same web same technologies mentioned earlier and the project files are
intended to be stored with a cloud storage solution.

Here, each module is treated as an independent open, community project within their
own scope, maintained collaboratively by teams consisted of people with different
development and design skill sets. As mentioned earlier, multiple projects may exist for
the same purposes at the same time, by different teams and people are encouraged to
undertake the role of maintaining a copy of an existing project according to their own
visions by creating a split instance of the project. This is the process called "forking".

As a part of the dialogue, users package their assets and upload them to this environment
just like sharing images on social media. These assets may contain visual mock-ups for
collaborating with the programmers, complete code and design solutions and anything
in between. Concepts and terminology such as "library, SDK, version control, forking,
extendability" translated from the world of software development are visualized and
made a part of the user experience, making them more human readable and interactible.

Integrating a social component in the software system also lowers the barrier of entry
for extending the system. User experience elements borrowed from social media allow
people to see what others are doing and are therefore invited to be a part of the dialogue.
This invitation to extend is intended to trigger awareness about the boundaries of the
extant functions on people who have never been engaged with these concepts before.
People, welcomed through this approach, are going to see merit in the proposals
outlined in this thesis even before they reach a certain expertise level with their tools.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

42

 INSIGHTS AND8 FUTURE DIRECTIONS

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

43

INSIGHTS AND FUTURE DIRECTIONS

It is true that making helps us think but making does not only have to be a means to
this end. Building finished systems during design research also has merit. Making high
fidelity prototypes and delivering them to actual users allow us acute task observation
opportunities in real life scenarios and in turn, help us think through problems with real
user data. This research could have utilized such user data if the designed system could
have been built as a finished product.

Having built the software would provide the opportunity to conduct iterative user tests
for a series of assessments and revisions. Right now it is presented as a proof of
concept because building it within the available time frame would require teaming up
with actual programmers.

Just as developers leave out designers from their procedures, my process lacks
development skills which would allow for a more accurate representation of the final
design intention and provide opportunities to test social features as well as further
opportunities regarding adaptivity and learning. As the ultimate goal for this project
was to allow people build their own tools, the community should have been integrated
in the design process as early as possible.

Further user tests could be used to experiment on integrating adaptivity beyond the
user interface since there is no reason to consider adaptivity mutually exclusive with
appropriation, hacking or building your own tools. The benefit of intelligent interfaces
can go as far as detecting the expertise level of the user and it has already been
experimented on GIMP (Hurst, Hudson, & Mankoff, 2007). A system that adapts to the
user at the function level may improve the design proposal of this thesis.

This project could also be developed with alternative input devices and hardware based
HCI solutions in mind however it was a deliberate decision not to propose hardware-
specific designs at this point. The cultural shift in software design needs to be triggered
in software first. As the tools and processes get more democratized, it is going to be
possible to bring that culture to hardware. An example hardware that is open to user
appropriation is Ableton Push (PushMusic at your fingertips. n.d.) It works alongside
the previously mentioned music software Ableton Live ("LiveCreate, Finish, Perform",
n.d.) that is designed with appropriation in mind. It remains possible to further explore
this opportunity in the future.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

44

There have also been some experiments to take automation to an online
synchronization level by accumulating user data in an online database. In the case of

“CommunityCommands”, this data is used to build a recommender system for the local
user (Matejka, Li, Grossman, & Fitzmaurice, 2009) whereas with “ingimp”, accumulated
data is stored as a means to profile user types. (Terry, Kay, Van Vugt, Slack, & Park,2008)
In this research, a layer of artificial intelligence in the form of a recommender could
have been implemented to learn about individual users and encourage them to move
from the safety of the defaults to popular alternative modules. Accumulating enough
information this way, the recommender would eventually start making more individually
appropriate suggestions.

Finally, although the solutions in this research are proposed specifically for creative
software, the underlying principles may be genericized and applied to any software
project in general. This too, is more feasible to do once a prototype has been built. For
now, these opportunities are reserved for the future.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

45

 APPENDIX A:
 PARTICIPATION ASSETS

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

46

INTERVIEW QUESTIONS

I) HOW DO WE LEARN THROUGH SOFTWARE USAGE?

Amongst contemporary image creation software, which one do you possess the most experience with (will be referred as <*>)?

Out of a scale of 5, how would you rate your level of experience with <*>?

How many years of experience do you have with <*>?

What change would make you grade yourself higher? What are you lacking?

What percentage of the functions in <*> are you experienced with?

Do you use the GUI of <*> as it is or do you switch between built-in, premade interface alternatives?

Do you customize the interface by moving the buttons and panels around, according to your needs?

Do you create and store your own interface sets?

Do you customize the keyboard shortcuts?

Amongst contemporary scripting languages, on which one do you possess the most experience?

How many years of experience do you have with this language?

Out of a scale of 5, how would you rate your level of experience?

II) HOW DO WE GET DESIGNERS TO BUILD THEIR OWN TOOLS?

Have you heard of development related concepts such as SDKs, version controlling, forking?

Do you know their meaning? If not, do they sound approachable?

Have you considered appropriating the functions of the software beyond interface customization?

Have you ever wanted a function from another software to exist and work the same way in <*>?

Have you ever wished that a new and original function that you imagined on your own existed in *>?

Have you searched online to see if the functions of a software product could be appropriated?

Have you searched to see if you could appropriate a software with a function that you imagined?

Were these queries done in search engines or in particular specialized online communities?

How far did you take this idea? Why / Did you give up?

What kind of technical shortcomings did you encounter on the way?

What kind of social shortcomings did you encounter on the way?

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

47

III) HOW DOES SOCIAL LEARNING WORK FOR SOFTWARE?

Is your learning, accelerating, decelerating (or neither) since you started using <*>?

What triggers your interest to learn more of <*>?

Can you find your own way in learning <*>?

Do you watch video tutorials for <*> online?

What makes you want to watch video tutorials?

Do you prefer official & professional or amateur video tutorials by community members?

Do you visit online communities, such as forums about <*>?

What makes you want to visit those communities as a reader and learner?

What do you learn from those places?

Do you visit online communities for software developers, such as Github?

What makes you want to visit those communities as a reader and learner?

What do you learn from those places?

IV) HOW DO MENTAL BARRIERS EFFECT PARTICIPATION?

Do you contribute to designer communities with your own posts?

Do you contribute to developer communities with your own posts?

Do you post answers to other people's questions in either community at all?

Would you do so if there were no experts around.

Would your decision change if the online community was moderated by volunteers?

Do moderation policies have an effect on your incentive to contribute?

Can you name a few personal motivators and demotivators in contributing?

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

48

ANSWER SET 1

A - "Professional tutorials impose a certain way of using a program.
Videos from volunteers are better for learning appropriation tricks that
aren't intended by the developers. I learn more from volunteers."

B - "I only watch video tutorials made by the volunteers. I would only
contribute to a volunteer community. If there are people who get paid for
being there, I expect them to respond instead. Paid staff on the official
forums are able to fake credibility and knowledge behind the brand
identity and I don’t like that."

C - "I don’t learn from Adobe because they advertise themselves too
much but Lynda is straightforward. The popularity of volunteer-made
tutorials prove their credibility. I follow Quora because the community
experts are credible. Credibility equals clarity."

ANSWER SET 2

A - "Software development would actually excite me more than learning
about design software because I don't know anything about it and
everything I’d learn would be new knowledge."

B - "Once I imagined a way the clipboard (copy paste) function could
work with multiple items at once. I talked to a friend about it and we
concluded that it could be done somehow but I can never do it myself
because this must require coding and I don’t know how to do it. "

C - "I don't want to design a specific function but I want to glitch and
randomize them. I also want to explore new interaction methods like
holding interface elements and shaking the mouse. "

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

49

ANSWER SET 3

A - "Development terminology belongs to a world I'm not a part of and I
can't be a part of as it is. The concepts should be expressed in ways that
are more welcoming to the layman."

B - "I hesitated to ask online since no platform exists that I can
comfortably talk about these things. Everybody must be asking such
things. The terminology in the development world alienates me. I would
do it if there was a graphic user interface to do it with."

C - "I tried to penetrate Github but I couldn't figure out how it worked at
all so I couldn't socialize there. It's too esoteric for non developers. There
is no such tutorial on “how to Github”. The terminology is written in an
alienating way for the purpose of leaving the layman outside the circle. It
is as if they're asking “if you’re not a developer, why are you here?""

ANSWER SET 4

A - "If I were less experienced I would choose "nodes" because it shows
everything at once. Combining "events" and "scripting" would allow me try
new things safely. It makes me happy to modify values without learning
the syntax."

B - "If I were more experienced I would choose "scripting". I would
enjoy being able to switch between the methods like switching between
viewports."

C - "I would combine "events" and "scripting" because it would be
exciting to design with a GUI and modify the code afterwards."

X - "I would switch to "scripting" for precision. If I were less experienced,
I would choose "nodes" because it is still precise. Combining "blocks"
and "scripting" would allow anyone try new things easily."

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

50

ANSWER SET 5

A - "I would mix A and B because B is too complex but I still want to
see numeric values. I would use B for more complex functions such as
3D transform.

B - "They both seem legible even though coding means "illegibility" to
me. Commands in B are simple enough to appeal to me. I would use A as
the default and B for precision."

C - "I'd like to switch between methods like photoshop presets. I would
use A for casual projects, B for precision. I'd use both over the default.
This is a promising idea since existing the development formula is
designed for company growth, not the users' needs."

X - "I would use A for casual projects, B for precision. I'd prefer both over
the defaults because they're both more immersive."

ANSWER SET 6

A - "I realized that the existing method requires unnecessary steps in
the beginning. Your alternatives made me think about using arrow keys
for precision."

B - "I realized that I were clicking and moving around more than necessary.
I wish these new tools existed but they’re hard for me to create. If they
could be created with visual programming I would make them."

C - "I realized that the existing method was imprecise the second time
I used it."

X - "I'm noticing that the default method feels very stupid the second
time I used it. I'm having difficulty with it because now I know there could
have been an easier way."

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

51

A

 B

C

X

CODING DESIGN

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

52

 Scripting Events

 Blocks Nodes

Figure 8: The assets used during the low-tech visual programming exercise.
Top: Researcher's rendering of Adobe Experience Design CC software.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

53

85%

65%

45%

PRODUCTIVITY

SUSTAINED USE

LEGIBILITY

PRODUCTIVITY

SUSTAINED USE

LEGIBILITY

PRODUCTIVITY

SUSTAINED USE

LEGIBILITY

PRODUCTIVITY

SUSTAINED USE

LEGIBILITY

70%

65%

75%

75%

60%

65%

80%

90%

80%

A - Difficult
B - Boring
C - The core
X - Not for everyone

A - Precise
B - Familiar
C - Inviting
X - Familiar

A - Disfunctional
B - Complex
C - Convoluted
X - Accessible

A - Conceptual
B - Neutral
C - Too much
X - Difficult

Figure 9: Some of the outcomes from the low-tech participatory exercise.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

54

UX & Function Alternatives
for Modifying Selection

A

B

Figure 10: The assets used for the modularity exercise.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

55

APPENDIX B:
DESIGN ASSETS

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

56

VISUAL STYLE

SYMBOLSADAPTABLE

HARD CODED

LAYOUT

FUNCTIONS

Functional customization is impossible.
User adaptations are superficial

interface adjustments.

Social Collaborator
Profiles

DESIGN DEV

DIALOGUE

Laypeople can not penetrate
the world of open source
software development

QA & Development Lead

Veteran Testers & Developers

Test Case & Patch Contributors

Bug Submitter & Feature Requesters

PASSIVE USERS
& OBSERVERS

Modularity can not be used
as a means to challenge

built-in functions

DEVELOPER DESIGNER

DISCUSSANT MULTI-TRAIT

MODULAR
PROJECT

Organizational
Structure

Modular Local
Client Adaptation

DESIGN DEV

DIALOGUE

DESIGN DEV

DIALOGUE

DESIGN DEV

DIALOGUE

DESIGN DEV

DIALOGUE

Figure 11: A comparison between the existing software development culture (left) and the changes formulated with this thesis (right).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

57

ENVIRONMENT 1:
CREATION

CREATION ENVIRONMENT
 LEVELS OF TANGIBILITY

MOST

LEAST

Application Settings Social Prof ile Options Constraints Manager

Lorem ipsum

Sit amet

Consectetuer

Adipiscing

Nibh euismod

Methods
Legacy History

Layers

Clipboard Manager

Full Screen Filters

Canvas

Variables CSS Transformation Adjustments

Object Fill
MAKE MODIFY

A
A

Libraries

Application Settings Social Prof ile Options Constraints Manager

Lorem ipsum

Sit amet

Consectetuer

Adipiscing

Nibh euismod

Methods
Legacy History

Layers

Clipboard Manager

Full Screen Filters

Canvas

Variables CSS Transformation Adjustments

Object Fill
MAKE MODIFY

A
A

Libraries

V

IV

IV

III

II

I

contextual information

Figure 12: The default appearance of the creation environment with the concept of -levels of tangibility- visualized.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

58

TRANSITION BETWEEN
CREATION &
INDIVIDUALIZATION

TOOL OPTIONS

ENVIRONMENT 2:
INDIVIDUALIZATION

INTERACTIVE
ASSISTANT MODE

Application Settings Social Prof ile Options Constraints Manager

A

A

row1
col2

How may I assist?

You:
-help

Assistant:
-We are currently editing the libraries module
Currently selected parent interface element is a table
Currently selected child object is a table cell
Child object’s identifying properties are as follows:
1) location is row 1, column 2.
Selected elements are tied to functions and visual styles

Please either click on the links to specify or type below.

Application Settings Social Prof ile Options Constraints Manager

Create new Library

Duplicate Library
Rename Library
Delete Library

Sort by Name
Sort by Date
Sort By Type

View Deleted Items

Hide Filtered Items
Lock Filtered Items
Label Filtered Items

A
A

Libraries

Figure 13: The initial transitionary phases of the individualization environment.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

59

ENVIRONMENT 2:
INDIVIDUALIZATION

EXTENDING VIA
CODING ABSTRACTIONS

ENVIRONMENT 2:
INDIVIDUALIZATION

PROGRAMMING ALONGSIDE
MULTIPLE ABSTRACTION METHODS

Application Settings Social Prof ile Options Constraints Manager

A

A

styles functions elements

function change_myselect(sel) {
var obj, dbParam, xmlhttp, myObj, x, txt = "";
obj = { "table":sel, "limit":20 };
dbParam = JSON.stringify(obj);
xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 myObj = JSON.parse(this.responseText);
 txt += "<table border='1'>"
 for (x in myObj) {
 txt += "<tr><td>" + myObj[x].name + "</td></tr>";
 }
 txt += "</table>"
 document.getElementById("demo").innerHTML = txt;
 }
};
xmlhttp.open("POST", "json_demo_db_post.php", true);
xmlhttp.setRequestHeader("Content-type", "app");
xmlhttp.send("x=" + dbParam);
}

<link href="stylesheet.css" rel="stylesheet" type="text/css"/>

<script type="text/javascript" src="transitions.js"></script>

<div class="pbutton"><a href="screen2.htm" class="transitions"

trans-effect="slideright02alt" trans-ease="easeout">Link to

Screen 2

</div>

row1
col2

mainfunctions.jsNodes

Blocks

styles functions elementsdisplayedelements.html

Set

Go to Layout

Transition

Easing

Duration

Target

Slide Right

Self

0.2 s

Ease Out

Screen 2

Do

Button 1When .Click

Application Settings Social Prof ile Options Constraints Manager

A

A

row1
col2

module / table / cell / properties / location

Figure 14: Advanced modes of engagement from the individualization environment.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

60

ENVIRONMENT 3:
SOCIALIZATION

DESKTOP MODE

Application Settings Social Prof ile Options Constraints Manager

A

A

row1
col2

Nulla consectetur quam eleifend velit posuere feugiat. Donec
suscipit neque vel pretium fermentum. Nulla vitae purus

justo. Maecenas cursus efficitur lectus, eu .

Donec consequat, sem id suscipit finibus, enim purus cursus
erat, non sodales sapien elit vitae lorem. Curabitur venenatis

mauris eu dui dapibus luctus. Quisque urna erat.

Maecenas id magna quam. Quisque tristique imperdiet
iaculis. Aliquam vitae eros sed neque ultrices tempor.

Quisque condimentum, ligula vel dapibus ultrices, eros dui.

Pellentesque vel laoreet mi. Praesent porta rhoncus dolor, et
iaculis lectus dignissim vitae. Ut non varius lorem. Nam

finibus vestibulum odio vitae aliquet. Cras sed magna.

Nam sollicitudin vitae ante in eleifend. Mauris sollicitudin
libero suscipit cursus blandit. Sed auctor, nisi vitae eleifend

vulputate, dolor enim faucibus dui, eget aliquam.

Zonec elementum ante cursus pulvinar consequat. Mauris
pretium accumsan diam quis ultrices. Pellentesque ac

malesuada nibh. Aliquam pulvinar hendrerit erat.

Morbi sollicitudin arcu ac ante suscipit viverra sed eu risus.
Vestibulum eu ultricies est. Curabitur lacinia vitae eros quis

luctus. Quisque egestas a turpis eu lacinia.

Sed tempor consectetur lectus vitae convallis. Nulla eu
molestie justo. Phasellus viverra ligula in mi aliquet lacinia.

Fusce non egestas quam.

Lacinia orci, id molestie nisl lacus vitae mi. Praesent dictum
elit eu augue rutrum, et mattis nisl condimentum. Interdum et

malesuada fames ac ante ipsum primis in faucibus

Interdum et malesuada fames ac ante ipsum primis in
faucibus. Nulla ac volutpat eros. Sed vel quam id tortor

pharetra tincidunt eu ac ligula. Donec iaculis neque libero.

Ut ultricies efficitur malesuada. Donec eu porta libero, a
egestas massa. Aliquam mi mi, dapibus pellentesque

tempor laoreet, pharetra a metus.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore
magna aliquam erat volutpat.

Nulla consectetur quam eleifend velit posuere feugiat. Donec
suscipit neque vel pretium fermentum. Nulla vitae purus
justo. Maecenas cursus efficitur lectus, eu .

Maecenas id magna quam. Quisque tristique imperdiet
iaculis. Aliquam vitae eros sed neque ultrices tempor.
Quisque condimentum, ligula vel dapibus ultrices, eros dui.

Vivamus eget velit ut sapien sodales viverra non sed odio.
Phasellus tempus finibus ligula eu mattis. Nulla bibendum
suscipit magna pretium ullamcorper. Nam elit risus.

Nam sollicitudin vitae ante in eleifend. Mauris sollicitudin
libero suscipit cursus blandit. Sed auctor, nisi vitae eleifend
vulputate, dolor enim faucibus dui, eget aliquam.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore
magna aliquam erat volutpat.

Integer lacinia pretium diam vel mollis. Pellentesque non
imperdiet tellus. Etiam eu facilisis nunc. Cras hendrerit lorem
sed nulla ullamcorper, luctus aliquet.

Zonec elementum ante cursus pulvinar consequat. Mauris
pretium accumsan diam quis ultrices. Pellentesque ac
malesuada nibh. Aliquam pulvinar hendrerit erat.

Morbi sollicitudin arcu ac ante suscipit viverra sed eu risus.
Vestibulum eu ultricies est. Curabitur lacinia vitae eros quis
luctus. Quisque egestas a turpis eu lacinia.

Divamus nisi ligula, cursus at tincidunt nec, elementum vel
libero. Vivamus tempus euismod eleifend. Mauris a aliquam
lorem. Maecenas feugiat lacus id placerat auctor.

Interdum et malesuada fames ac ante ipsum primis in
faucibus. Nulla ac volutpat eros. Sed vel quam id tortor
pharetra tincidunt eu ac ligula. Donec iaculis neque libero.

a week ago

4 days ago

yesterday

+6

+12

+3

+1

+6

+2

+7

+1

+6

+1

+4

+2

+2

+7

+1

+6

+2

+7

+1

ENVIRONMENT 2 ALTERNATIVE:
TOOL INDIVIDUALIZATION

GLITCHBRUSH TOOL
WITH PREVIEW

Application Settings Social Prof ile Options Constraints Manager

2D Nodes

Blocks

Storyboards

Scripting

Events

Glitchbrush Tool

Chromatic Aberration

Cathode Ray Diffuse

Color Matrix

Deband

Emphasize

Explosion

Film Grain

HDR & Bloom

History Warp

Lift Gamma Gain

Luminance

Parallax Blend

Extend

brush geometry glitches

Vibrance

Chroma

Tonemap

Slope

Radiance

Gamma

Viewing Distance

Intensity

Tube Curvature

Radius

Corner Flow

Gaussian

Brightness

ADVANCED

DUMMY ENTITY

CONNECTOR

3D Nodes

Figure 15: An alternate view from the individualization environment (top) and the transition to the social environment (bottom).

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

61

Donec consequat, sem id suscipit finibus,
enim purus cursus erat, non sodales sapien
elit vitae lorem..

Maecenas id magna dies edada aquam.
Quisque tristique imperdiet deitus iaculis.
Aliquam vitae eros sed neque.

Pellentesque vel laoreetedac mi. Praesent
porta rhoncus dolor, et iaculis lectus
dignissim vitae. Ut non varius...

Vivamus eget velit ut sapien sodales viverra
non sed odio. Phasellus tempus finibus
ligula eu mattis...

Nam sollicitudin vitae ante in eleifend.
Mauris sollicitudin libero suscipit cursus
blandit. Sed auctor, nisi vitae....

Lacinia orci, id molestie nisl lacus vitae mi.
Praesent dictum elit eu augue rutrum, et
mattis nisl.

Interdum et malesuada fames ac ante
ipsum primis in faucibus. Nulla ac volutpat
eros. Sed vel...

Ut ultricies efficitur malesuada. Donec eu
porta libero, a egestas massa. Aliquam mi
mi, dapibus...

v2.1a week ago

+6

+12

+3

+1

+24

+6

+2

+7
Donec consequat, sem id suscipit finibus,

enim purus cursus erat, non sodales sapien
elit vitae lorem..

Maecenas id magna dies edada aquam.
Quisque tristique imperdiet deitus iaculis.

Aliquam vitae eros sed neque.

Pellentesque vel laoreetedac mi. Praesent
porta rhoncus dolor, et iaculis lectus

dignissim vitae. Ut non varius...

Vivamus eget velit ut sapien sodales viverra
non sed odio. Phasellus tempus finibus

ligula eu mattis...

Nam sollicitudin vitae ante in eleifend.
Mauris sollicitudin libero suscipit cursus

blandit. Sed auctor, nisi vitae....

Lacinia orci, id molestie nisl lacus vitae mi.
Praesent dictum elit eu augue rutrum, et

mattis nisl.

Interdum et malesuada fames ac ante
ipsum primis in faucibus. Nulla ac volutpat

eros. Sed vel...

Ut ultricies efficitur malesuada. Donec eu
porta libero, a egestas massa. Aliquam mi

mi, dapibus...

v2.1 a week ago

+2

+9

+1

+1

+2

+24

+6

+22

+8

Figure 16: The social environment as it is accessed from a mobile device.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

62

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore

magna aliquam erat volutpat.

Xaecenas bibendum nulla libero, ut condimentum elit aliquet
ut. Suspendisse eu lectus lacus. Integer ipsum libero,

fermentum et commodo ac.

Nulla consectetur quam eleifend velit posuere feugiat.
Donec suscipit neque vel pretium fermentum. Nulla vitae

purus justo. Maecenas cursus efficitur lectus, eu .

Cras pharetra vehicula dolor, vel feugiat neque molestie et.
Sed pellentesque vulputate imperdiet. Curabitur leo felis,

sapien congue id bibendum vitae.

Maecenas id magna quam. Quisque tristique imperdiet
iaculis. Aliquam vitae eros sed neque ultrices tempor.

Quisque condimentum, ligula vel dapibus ultrices, eros dui.

Pellentesque vel laoreet mi. Praesent porta rhoncus dolor, et
iaculis lectus dignissim vitae. Ut non varius lorem. Nam
finibus vestibulum odio vitae aliquet. Cras sed magna.

Vivamus eget velit ut sapien sodales viverra non sed odio.
Phasellus tempus finibus ligula eu mattis. Nulla bibendum

suscipit magna pretium ullamcorper. Nam elit risus.

Nam sollicitudin vitae ante in eleifend. Mauris sollicitudin
libero suscipit cursus blandit. Sed auctor, nisi vitae eleifend

vulputate, dolor enim faucibus dui, eget aliquam.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore

magna aliquam erat volutpat.

Integer lacinia pretium diam vel mollis. Pellentesque non
imperdiet tellus. Etiam eu facilisis nunc. Cras hendrerit

lorem sed nulla ullamcorper, luctus aliquet.

Zonec elementum ante cursus pulvinar consequat. Mauris
pretium accumsan diam quis ultrices. Pellentesque ac

malesuada nibh. Aliquam pulvinar hendrerit erat.

Morbi sollicitudin arcu ac ante suscipit viverra sed eu risus.
Vestibulum eu ultricies est. Curabitur lacinia vitae eros quis

luctus. Quisque egestas a turpis eu lacinia.

Sed vehicula enim non erat consequat tempus. Quisque vel
accumsan massa. Morbi vehicula consequat nibh, id

sollicitudin massa viverra quis. Vestibulum suscipit augue
vitae ipsum mollis, in interdum mi iaculis. Praesent blandit

odio et lorem viverra, at accumsan nulla euismod.

Aliquam et ligula ac sapien pretium semper. Fusce iaculis
est a tincidunt ullamcorper. Pellentesque sit amet cursus

lectus. Vivamus sed dolor risus. Praesent placerat nunc eu
feugiat tincidunt. Nulla sagittis consectetur lorem quis
malesuada. Sed purus eros, fermentum vel congue in,

pulvinar et elit. Sed eget lectus in augue facilisis.

Divamus nisi ligula, cursus at tincidunt nec, elementum vel
libero. Vivamus tempus euismod eleifend. Mauris a aliquam

lorem. Maecenas feugiat lacus id placerat auctor.

Interdum et malesuada fames ac ante ipsum primis in
faucibus. Nulla ac volutpat eros. Sed vel quam id tortor

pharetra tincidunt eu ac ligula. Donec iaculis neque libero.

Ut ultricies efficitur malesuada. Donec eu porta libero, a
egestas massa. Aliquam mi mi, dapibus pellentesque

tempor laoreet, pharetra a metus.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore

magna aliquam erat volutpat.

Xaecenas bibendum nulla libero, ut condimentum elit aliquet
ut. Suspendisse eu lectus lacus. Integer ipsum libero,

fermentum et commodo ac.

Nulla consectetur quam eleifend velit posuere feugiat.
Donec suscipit neque vel pretium fermentum. Nulla vitae

purus justo. Maecenas cursus efficitur lectus, eu .

Cras pharetra vehicula dolor, vel feugiat neque molestie et.
Sed pellentesque vulputate imperdiet. Curabitur leo felis,

sapien congue id bibendum vitae.

Donec consequat, sem id suscipit finibus, enim purus
cursus erat, non sodales sapien elit vitae lorem. Curabitur

venenatis mauris eu dui dapibus luctus. Quisque urna erat.

Maecenas id magna quam. Quisque tristique imperdiet
iaculis. Aliquam vitae eros sed neque ultrices tempor.

Quisque condimentum, ligula vel dapibus ultrices, eros dui.

Pellentesque vel laoreet mi. Praesent porta rhoncus dolor, et
iaculis lectus dignissim vitae. Ut non varius lorem. Nam
finibus vestibulum odio vitae aliquet. Cras sed magna.

Nam sollicitudin vitae ante in eleifend. Mauris sollicitudin
libero suscipit cursus blandit. Sed auctor, nisi vitae eleifend

vulputate, dolor enim faucibus dui, eget aliquam.Vestibulum
suscipit augue vitae ipsum mollis, in interdum mi iaculis et

praesent blandit.

In eget ligula ornare nisl tincidunt condimentum. Duis a
efficitur justo. Quisque consequat commodo orci id

tincidunt. Maecenas eu tincidunt nibh.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore

magna aliquam erat volutpat.

Integer lacinia pretium diam vel mollis. Pellentesque non
imperdiet tellus. Etiam eu facilisis nunc. Cras hendrerit

lorem sed nulla ullamcorper, luctus aliquet.

Zonec elementum ante cursus pulvinar consequat. Mauris
pretium accumsan diam quis ultrices. Pellentesque ac

malesuada nibh. Aliquam pulvinar hendrerit erat.

Morbi sollicitudin arcu ac ante suscipit viverra sed eu risus.
Vestibulum eu ultricies est. Curabitur lacinia vitae eros quis

luctus. Quisque egestas a turpis eu lacinia.

Sed tempor consectetur lectus vitae convallis. Nulla eu
molestie justo. Phasellus viverra ligula in mi aliquet lacinia.

Fusce non egestas quam.

Lacinia orci, id molestie nisl lacus vitae mi. Praesent dictum
elit eu augue rutrum, et mattis nisl condimentum. Interdum

et malesuada fames ac ante ipsum primis in faucibus

Divamus nisi ligula, cursus at tincidunt nec, elementum vel
libero. Vivamus tempus euismod eleifend. Mauris a aliquam

lorem. Maecenas feugiat lacus id placerat auctor.

Interdum et malesuada fames ac ante ipsum primis in
faucibus. Nulla ac volutpat eros. Sed vel quam id tortor

pharetra tincidunt eu ac ligula. Donec iaculis neque libero.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore
magna aliquam erat volutpat.

Xaecenas bibendum nulla libero, ut condimentum elit aliquet
ut. Suspendisse eu lectus lacus. Integer ipsum libero,
fermentum et commodo ac.

Nulla consectetur quam eleifend velit posuere feugiat.
Donec suscipit neque vel pretium fermentum. Nulla vitae
purus justo. Maecenas cursus efficitur lectus, eu .

Cras pharetra vehicula dolor, vel feugiat neque molestie et.
Sed pellentesque vulputate imperdiet. Curabitur leo felis,
sapien congue id bibendum vitae.

Donec consequat, sem id suscipit finibus, enim purus
cursus erat, non sodales sapien elit vitae lorem. Curabitur
venenatis mauris eu dui dapibus luctus. Quisque urna erat.

Maecenas id magna quam. Quisque tristique imperdiet
iaculis. Aliquam vitae eros sed neque ultrices tempor.
Quisque condimentum, ligula vel dapibus ultrices, eros dui.

Pellentesque vel laoreet mi. Praesent porta rhoncus dolor, et
iaculis lectus dignissim vitae. Ut non varius lorem. Nam
finibus vestibulum odio vitae aliquet. Cras sed magna.

Ligula ac sapien pretium semper. Fusce iaculis est a
tincidunt ullamcorper. Pellentesque sit amet cursus lectus.
Vivamus sed dolor risus.

Praesent placerat nunc eu feugiat tincidunt. Nulla sagittis
consectetur lorem quis malesuada.

Sed purus eros, fermentum vel congue in, pulvinar et elit.
Sed eget lectus in augue facilisis. Quisque vel accumsan
massa. Morbi vehicula consequat nibh, id sollicitudin massa
viverra quis.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore
magna aliquam erat volutpat.

Integer lacinia pretium diam vel mollis. Pellentesque non
imperdiet tellus. Etiam eu facilisis nunc. Cras hendrerit
lorem sed nulla ullamcorper, luctus aliquet.

Zonec elementum ante cursus pulvinar consequat. Mauris
pretium accumsan diam quis ultrices. Pellentesque ac
malesuada nibh. Aliquam pulvinar hendrerit erat.

Morbi sollicitudin arcu ac ante suscipit viverra sed eu risus.
Vestibulum eu ultricies est. Curabitur lacinia vitae eros quis
luctus. Quisque egestas a turpis eu lacinia.

Sed tempor consectetur lectus vitae convallis. Nulla eu
molestie justo. Phasellus viverra ligula in mi aliquet lacinia.
Fusce non egestas quam.

Lacinia orci, id molestie nisl lacus vitae mi. Praesent dictum
elit eu augue rutrum, et mattis nisl condimentum. Interdum
et malesuada fames ac ante ipsum primis in faucibus

Divamus nisi ligula, cursus at tincidunt nec, elementum vel
libero. Vivamus tempus euismod eleifend. Mauris a aliquam
lorem. Maecenas feugiat lacus id placerat auctor.

Interdum et malesuada fames ac ante ipsum primis in
faucibus. Nulla ac volutpat eros. Sed vel quam id tortor
pharetra tincidunt eu ac ligula. Donec iaculis neque libero.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore
magna aliquam erat volutpat.

Xaecenas bibendum nulla libero, ut condimentum elit aliquet
ut. Suspendisse eu lectus lacus. Integer ipsum libero,
fermentum et commodo ac.

Cras pharetra vehicula dolor, vel feugiat neque molestie et.
Sed pellentesque vulputate imperdiet. Curabitur leo felis,
sapien congue id bibendum vitae.

Donec consequat, sem id suscipit finibus, enim purus
cursus erat, non sodales sapien elit vitae lorem. Curabitur
venenatis mauris eu dui dapibus luctus. Quisque urna erat.

Maecenas id magna quam. Quisque tristique imperdiet
iaculis. Aliquam vitae eros sed neque ultrices tempor.
Quisque condimentum, ligula vel dapibus ultrices, eros dui.

Pellentesque vel laoreet mi. Praesent porta rhoncus dolor, et
iaculis lectus dignissim vitae. Ut non varius lorem. Nam
finibus vestibulum odio vitae aliquet. Cras sed magna.

Vivamus eget velit ut sapien sodales viverra non sed odio.
Phasellus tempus finibus ligula eu mattis. Nulla bibendum
suscipit magna pretium ullamcorper. Nam elit risus.

Nam sollicitudin vitae ante in eleifend. Mauris sollicitudin
libero suscipit cursus blandit. Sed auctor, nisi vitae eleifend
vulputate, dolor enim faucibus dui, eget aliquam.

Lorem ipsum dolor sit amet, consec tetuer adipiscing elit,
diam nonummy nibh euismod tincidunt ut laoret dolore
magna aliquam erat volutpat.

Integer lacinia pretium diam vel mollis. Pellentesque non
imperdiet tellus. Etiam eu facilisis nunc. Cras hendrerit
lorem sed nulla ullamcorper, luctus aliquet.

Morbi sollicitudin arcu ac ante suscipit viverra sed eu risus.
Vestibulum eu ultricies est. Curabitur lacinia vitae eros quis
luctus. Quisque egestas a turpis eu lacinia. Aenean sodales
dolor ligula, vitae condimentum augue dapibus faucibus.
Nunc pharetra velit ullamcorper, ultricies enim.

Sed eget lectus in augue facilisis egestas. Nullam facilisis
mollis semper. Nulla sagittis consectetur lorem quis
malesuada.

Sed tempor consectetur lectus vitae convallis. Nulla eu
molestie justo. Phasellus viverra ligula in mi aliquet lacinia.
Fusce non egestas quam.

Lacinia orci, id molestie nisl lacus vitae mi. Praesent dictum
elit eu augue rutrum, et mattis nisl condimentum. Interdum
et malesuada fames ac ante ipsum primis in faucibus

Divamus nisi ligula, cursus at tincidunt nec, elementum vel
libero. Vivamus tempus euismod eleifend. Mauris a aliquam
lorem. Maecenas feugiat lacus id placerat auctor.

Interdum et malesuada fames ac ante ipsum primis in
faucibus. Nulla ac volutpat eros. Sed vel quam id tortor
pharetra tincidunt eu ac ligula. Donec iaculis neque libero.

Ut ultricies efficitur malesuada. Donec eu porta libero, a
egestas massa. Aliquam mi mi, dapibus pellentesque
tempor laoreet, pharetra a metus.

January

November

a week ago

4 days ago

yesterday

Module
Version 2.1

Module
Version 2.0

+6

+12

+3

+1

+6

+2

+7

+1

+6

+1

+6

+12

+3

+1

+6

+2

+7

+4

+2

+2

+7

+1

+6

+2

+7

+1

+6

+1

+9

+4

+2

+17

+1

+6

+2

+7

+1
Figure 17: An expanded view of the social environment.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

63

REFERENCES

A hackable text editor for the 21st Century. (n.d.). Retrieved March 16, 2017, from https://atom.io/

Belin, A., & Prié, Y. (2012). DIAM: Towards a Model for Describing Appropriation Processes Through
the Evolution of Digital Artifacts. In Proceedings of the Designing Interactive Systems Conference
(pp. 645–654). New York, NY, USA: ACM.

Benyon, D. (1993). Accommodating individual differences through an adaptive user interface.
Human Factors in Information Technology, 10, 149–149.

Benyon, D., & Murray, D. (1993). Developing Adaptive Systems to Fit Individual Aptitudes. In
Proceedings of the 1st International Conference on Intelligent User Interfaces (pp. 115–121). New
York, NY, USA: ACM.

Bunt, A., Conati, C., & McGrenere, J. (2007). Supporting Interface Customization Using a Mixed-
initiative Approach. In Proceedings of the 12th International Conference on Intelligent User
Interfaces (pp. 92–101). New York, NY, USA: ACM.

Cheung, G., Chilana, P., Kane, S., & Pellett, B. (2009). Designing for Discovery: Opening the Hood for
Open-source End User Tinkering. In CHI ’09 Extended Abstracts on Human Factors in Computing
Systems (pp. 4321–4326). New York, NY, USA: ACM.

Dix, A. (2007). Designing for Appropriation. In Proceedings of the 21st British HCI Group Annual
Conference on People and Computers: HCI...But Not As We Know It - Volume 2 (pp. 27–30). Swinton,
UK, UK: British Computer Society.

Electron. (n.d.). Retrieved March 26, 2017, from https://electron.atom.io/

Ellis, T. O., Heafner, J. F., & Sibley, W. L. (1969). The GRAIL Project: An Experiment in Man-Machine
Communications. Santa Monica, California: Rand Corporation.

Granić, A., & Nakić, J. (2010). Enhancing the Learning Experience: Preliminary Framework for User
Individual Differences. In Proceedings of the 6th International Conference on HCI in Work and
Learning, Life and Leisure: Workgroup Human-computer Interaction and Usability Engineering (pp.
384–399). Berlin, Heidelberg: Springer-Verlag.

Hughes, J. (1989). Why functional programming matters. The computer journal, 32(2), 98-107.

Hurst, A., Hudson, S. E., & Mankoff, J. (2007). Dynamic Detection of Novice vs. Skilled Use Without
a Task Model. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(pp. 271–280). New York, NY, USA: ACM.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

64

Jensen, C., & Scacchi, W. (2007). Role Migration and Advancement Processes in OSSD Projects:
A Comparative Case Study. In Proceedings of the 29th International Conference on Software
Engineering (pp. 364–374). Washington, DC, USA: IEEE Computer Society.
Kay, A. C. (1972). A Personal Computer for Children of All Ages. In Proceedings of the ACM Annual
Conference - Volume 1. New York, NY, USA: ACM. https://doi.org/10.1145/800193.1971922

Kay, A. C. (1996). The early history of Smalltalk. In T. J. Bergin & R. G. Gibson (Authors),
History of programming languages II (pp. 511-598). New York, New York: ACM Press.
doi:10.1145/234286.1057828

Kay, A. C. (2012). The Future of Reading Depends on the Future of Learning Difficult to Learn Things.
In B. Junge, Z. Berzina, W. Scheiffele, W. Westerveld, & C. Zwick (Eds.), The digital turn: design in
the era of interactive technologies. Berlin: ELab/Weißensee Academy of Art Berlin.

Lin, L.-C., Scull, C., & Walsh, D. (2012). Focusing Our Vision: The Process of Redesigning Adobe
Acrobat. In CHI ’12 Extended Abstracts on Human Factors in Computing Systems (pp. 629–644).
New York, NY, USA: ACM.

LiveCreate, Finish, Perform. (n.d.). Retrieved March 16, 2017, from https://www.ableton.com/en/
live/

Matejka, J., Li, W., Grossman, T., & Fitzmaurice, G. (2009). CommunityCommands: Command
Recommendations for Software Applications. In Proceedings of the 22Nd Annual ACM Symposium
on User Interface Software and Technology (pp. 193–202). New York, NY, USA: ACM.

McCullough, M. (1998). Abstracting craft: the practiced digital hand. Cambridge, Massachusetts:
MIT Press.

McGrenere, J., Baecker, R. M., & Booth, K. S. (2002). An Evaluation of a Multiple Interface Design
Solution for Bloated Software. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 164–170). New York, NY, USA: ACM.

NW.js. (n.d.). Retrieved March 26, 2017, from https://nwjs.io/

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York, New York:
Basicbooks.

PushMusic at your fingertips. (n.d.). Retrieved March 16, 2017, from https://www.ableton.com/en/
push/

Reas, C., & Fry, B. (2007). Processing: a programming handbook for visual designers and artists.
Cambridge, Massachusetts: MIT Press.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

65

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. Computer,
16(8), 57-69. doi:10.1109/MC.1983.1654471

Shneiderman, B. (1997). Direct manipulation for comprehensible, predictable and controllable user
interfaces. Proceedings of the 2nd international conference on Intelligent user interfaces - IUI '97,
33-39. doi:10.1145/238218.238281

Shneiderman, B. (2007). Creativity Support Tools: Accelerating Discovery and Innovation. Commun.
ACM, 50(12), 20–32.

Solomon, C. J., & Papert, S. (1976). A case study of a young child doing turtle graphics in LOGO.
Proceedings of the June 7-10, 1976, national computer conference and exposition on - AFIPS '76.
doi:10.1145/1499799.1499945
Sutherland, I. E. (1963). Sketchpad. Proceedings of the May 21-23, 1963, spring joint computer
conference on - AFIPS '63 (Spring). doi:10.1145/1461551.1461591

Tanenbaum, J. G., Williams, A. M., Desjardins, A., & Tanenbaum, K. (2013). Democratizing
Technology: Pleasure, Utility and Expressiveness in DIY and Maker Practice. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 2603–2612). New York, NY, USA:
ACM.

Terry, M., Kay, M., Van Vugt, B., Slack, B., & Park, T. (2008). Ingimp: Introducing Instrumentation to
an End-user Open Source Application. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (pp. 607–616). New York, NY, USA: ACM.

Tufte, E. R. (2006). The Cognitive Style of PowerPoint: Pitching Out Corrupts Within. In Beautiful
Evidence (pp. 156-185). Cheshire, Connecticut: Graphics Press.

Victor, B. (2012). Learnable Programming. Retrieved February 19, 2017, from http://worrydream.
com/LearnableProgramming/

WordPress.org. (n.d.). Retrieved March 16, 2017, from https://WordPress.org/plugins/

WordPress Themes from ThemeForest. (n.d.). Retrieved March 30, 2016, from http://themeforest.
net/category/WordPress

Zeidler, C., Lutteroth, C., & Weber, G. (2013). An Evaluation of Advanced User Interface Customization.
In Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation,
Application, Innovation, Collaboration (pp. 295–304). New York, NY, USA: ACM.

DEMOCRATIZING SOFTWARE DESIGN
THROUGH FUNCTIONAL INDIVIDUALIZATION
of CREATIVE SOFTWARE

66

